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Abstract : This paper addresses the problem of consensus of multi-agent systems with general Lipschitz 

nonlinear dynamics. The goal of this note was to introduce a design approach. We take advantage of the 

structure of the part of the non-linearity and inequality scaling technology. The advantage of the developed 

approach was that it was significantly less conservative than other previously published results for Lipschitz 

systems. A numerical example was presented to show the superiority of this letter. 
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I. Introduction 
Recently, consensus for a group of agents has became an important problem in the area of cooperative 

control of multi-agent systems and has been widely investigated by numerous researchers, due to its potential 

applications in such broad areas as satellite formation flying, sensor networks, and cooperative surveillance[1,2]. 

In [3] a distributed observer-type consensus protocol based on relative output measurements was proposed. In 

[4], a general framework of the consensus problems for networks of dynamic agents with fixed or switching 

topologies and communication time delays was established. Relative-state distributed consensus protocols was 

established in [5]. A distributed algorithm was proposed in [6] to achieve consensus in finite time. However the 

provided synthesis conditions which infeasible for systems with big Lipschitz constants restrict all these 

approaches, such as [6],[7],[8]. Then in [18] the authors introduced a generalized version of the Lipschitz 

condition which includes some structural knowledge of the system non-linearity.  

This paper considers the problem of consensus of multi-agent systems with general Lipschitz nonlinear 

dynamics under a fixed topology. Consensus of multi-agent systems with general linear dynamics was researched 

in [3],[5],[14],[15],[19]. Especially, different static and dynamic consensus protocols are established in 

[3],[5],[14] which is difficult to tackle and implement by each agent in distributed fashion. Then, we design a 

distributed consensus protocol for the relative states and an adaptive law for adjusting the coupling weights 

between neighboring agents which were first proposed in [6]. One contribution of this paper is to extend the 

result of [3],[5],[6],[14],[20] to a generalized Lipschitz nonlinear system which includes the classical Lipschitz 

system as a special case. The goal of this note was to introduce a design approach. We take advantage of the 

structure of the part of the non-linearity and inequality scaling technology. The advantage of the developed 

approach was that it was significantly less conservative than other previously published results for Lipschitz 

systems. 

The rest of this paper was organized as follows. Some useful preliminaries results were reviewed in Section 2. 

The consensus problems of multi-agent systems with generalized Lipschitz non-linear dynamics using distributed 

adaptive protocols were investigated in Section 3. Extensions to Lipschitz non-linearity dynamics were studied in 

Section 4. In Section 5, we use a simulative example to illustrate the applications of our consensus algorithm. 

Section 6 concludes the paper.  

II. Preliminaries 
A. Graph theory notions 

Let n nR  be the set of n n  real matrices, n nC   be the set of n n complex matrices. Denote by 

1 ( PR1 ) a column vector with all entries equal to one. The superscript T  means transpose for real 

matrices. PI  represents the identity matrix of dimension P . For any matrices, if not explicitly stated, were 

assumed to have compatible dimensions. Diag 1( ,..., )nA A  represents a block-diagonal matrix with 

matrix , 1,...,iA i n , on its diagonal .The matrix inequality ( )A B   means that A  and B were square 

Hermitian matrices and that A B  was positive (semi-) definite. A B  denotes the Kronecker product of 
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matrices A  and B . For a vector x , let x  denote its 2-norm. An undirected graph ( , )G   ,where 

1{ ,..., }Nv v   was the set of nodes( i  .e ,agents),and      was the set of edges( i .e, 

communication links).An edge ( , )( )i jv v i j means that agents iv  and jv  can obtain information from each 

other. A path between distinct nodes iv  and lv  was a sequence of edges of the form 1( , ), ,..., 1k kv v k i l   . 

An undirected graph was connected if there exists a path between every pair of distinct nodes, otherwise was 

disconnected. A directed graph G  was a pair ( , )  , where 1{ ,..., }Nv v   was a non-empty finite set of notes 

and      was the set of edges. For an edge ( . )i jv v , node iv  was called the parent node ,node jv  was 

the child node, .i jv v  were adjacent. A directed graph contains a directed spanning tree if there exists a node 

called the root, which has no parent node, such that the node has a directed path to every other node in the graph. 

A directed graph was strongly connected if there was a directed path from every node to every other node. A 

directed graph has a directed spanning tree if it was strongly connected , but not vice versa. 

The adjacency matrix [ ] N N

i jA a R   associated with the directed graph G  was defined by 0, 1ii i ja a   

if ( , )j iv v   and 0i ja   otherwise. Adjacency matrix A  associated with the undirected graph was defined 

by 0, 1ii ji i ja a a    if ( , )j iv v   and 0ji i ja a   otherwise. Laplacian matrix [ ] N N

ijL L R    was 

defined as ii ijj i
L a


 and ,ij ijL a i j   . 

B. Lemmas: 
Lemma 1[8,9]: Zero was an eigenvalue of L  with 1 as a right eigenvector and all non-zero eigenvalues 

have positive real parts .Furthermore ,zero was a simple eigenvalue of L  if and only if the graph G  has a 

directed spanning tree . 

Lemma2[17]: For any vectors , na b R and scalar 0  ,we have 12 T T Ta b a a b b    . 

 

III. Consensus of multi-agent systems with generalized Lipschitz non-linear dynamics . 
Consider a group of N identical agents with generalized Lipschitz nonlinearity dynamics. The dynamics of 

the i -th agent were described by 

              ( )i i i i ix A x Df Hx Bu     1, . . . ,i N                              (1) 

where 
n

ix R  was the state, 
p

iu R  was the control input, and , , ,A B D H  were constant matrices with 

compatible dimensions, and nonlinear function ( )iDf Hx  was assumed to satisfy the following general form 

Lipschitz condition which was defined in [18] as follows 

                      T Tf Wf x Rx                                        (2) 

where the W  and R  were positive definite symmetric matrices . ( ) ( ),i j i jf f Hx f Hx x x x     . It can 

be seen that any non-linear function ( )Df Hx  was a Lipschitz function with max min( ) / ( )R W    which 

called Lipschitz constant. Any Lipschitz non-function ( )Df Hx  can satisfy condition (2) with 
2,W I R I  . 

(2) can also be rewritten as a generalized form
W RK f K x    , WK 、 RK  were two positive definite matrices. 

,W RK W K R  . 

The communication topology among the agents was represented by an undirected graph ( , )G   , where 

{1,..., }N   was the set of nodes( i  .e ,agents), and      was the set of edges( i .e, communication links). 

An edge ( , )( )i jv v i j means that agents iv  and jv  can obtain information from each other. A path between 

distinct nodes 1v  and lv  was a sequence of edges of the form 1( , ), 1,..., 1k kv v k l   . An undirected graph 

was connected if there exists a path between every pair of distinct nodes , otherwise was disconnected. 

A variety of static and dynamic consensus protocols have been proposed to reach consensus for agents with 

dynamics given by (1) e.g, in [1]–[5]. For instance, a dynamic consensus protocol based on the relative states 

between neighboring agents was given in [6] as follows 

 

                                                                                (3) 

 

  

1

( )
N

i i j i j i j

j

u F c a x x


 ( ) ( )T

ij i j i j i j i jc k a x x x x   
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where i ja was ( ,i j )-th entry of the adjacency matrix A  associated with G , ij jik k  were positive 

constants, i jc  denotes the time-varying coupling weight between agents iv  and jv  with 

(0) (0)i j i jc c ,and p nF R   and n nR   were the feedback gain matrices. 

 

 

Theorem 1 :Solve the LMI : 

 

                                                                              (4) 

 

 

 

 

to get a matrix 0P   and a scalar 0   .Then the N agent described by (1) reach global consensus under the 

protocol (3) with 1TF B P   and 1 1TP BB P    for any connected communication graph G . 

Proof: As argued in the Section 2 ,it follows that ( ) ( ), 0.i j j ic t c t t    Using (3) for (1),we obtain the 

closed-loop network dynamics as 

      

 

  

               ( ) ( )T

ij i j i j i j i jc k a x x x x    1,...,i N                            (5) 

Letting and 
1[ ,..., ] ,T T T

Ne e e we get [( (1/ )11 ) ]T

N ne I N I x   .We can see that e  satisfies the following 

dynamics: 

 

 

 

   

                ( ) ( )T

ij i j i j i j i jc k a e e e e     1,...,i N                              (6) 

 

where ij ijc c    and   was a positive constant. Consider the Lyapunov function candidate 

 

                                                                             (7) 

                                                                              

the time derivative of V  along the trajectory of (8) as follows: 

 

      

 

 

 

 

                                                                             (8) 

According to the equivalent form of Lipschitz condition (2) and Lemma 2 we obtain 

 

 

 

 

   

 

 

                                                                             (9) 
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As 
1

0
N

T

i

i

e


 , then 

                                                                           (10) 

Set up 
1

î ie P e , and ˆ [ ,..., ]T T T

i Ne e e , based on (9)and(10)we can draw from (8)that 

 

 

 

 

                                                                           (11) 

 

 

Set up N NU R   be the unitary matrix satisfying 2(0, ,..., )T

NU LU diag     ,set up 

1
ˆ[ ,..., ] ( )T T T T

N NU I e     , then 1

1 [(1 / ) ] 0T N P e     ,from (11)we have 

 

                                                                            

 

                                                                          （12） 

                                                                    

 

We choose sufficiently big   so that 2 , 2,...,i i N   , then 

 

 

 

                                                                            (13) 

 

We get inequality (4) from (14) by using the Schur complement Lemma[12].  we know that ( ) 0.S    

1 0V  , so 1( )V t  and every ijc  were bounded. And from (5) we know that ijc  was monotonically increasing, 

so ijc converge to finite value and ijc  as well. By using LaSalle-Yoshizawa Theorem [13] we 

get lim ( ) 0t S   ,so lim 0, 2,...,t i i N   , 1 0  . In conclusion, lim , ( ) 0t e t  .  so, we achieve 

the proof . 

 Remark 1: Equation (2) was a generic form Lipschitz condition. Any Lipschitz non-function ( )f Hx  can 

satwasfy equation (2) with 
2,W I R I   which was first define in [18] includes some structural knowledge of 

the system non-linearity for observer design. Then, it was used to consensus of multi-agent systems with 

non-linear dynamics 

 

Deduction to Lipschitz non-linearity dynamics 
This subsection considers the consensus problem of the agents in (1) under the adaptive protocol (3). The 

communication topology among the agents was represented by an undirected graph. The nonlinear function 

( )iDf Hx  was assumed to satisfy the Lipschitz condition with a Lipschitz constant 0  , i.e. 

                                                                            (14) 

  Theorem 2 :Solve the LMI :  

                                                                            (15) 

 

 

 

To get a matrix 0P   and a scalar 0   .Then the N agent described by (1) reach global consensus under 

the protocol (3) with 1TF B P   and 1 1TP BB P   given as in Theorem 1 for any connected 

communication graph G .The proof of Theorem 1can be shown by following similar steps in proving Theorem 2  

Remark 2:Theorem 2 tends Theorem 1 to the case with Lipschitz non-linear dynamics. When 
2,W I R I   , Theorem 1will reduce to Theorem 2.Theorem 2 shows that the agents in (1) under the adaptive 

protocol (3) can also get consensus with the nonlinear function satisfying the Lipschitz condition. 
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IV. Numerical comparisons and simulation examples 
In order to evaluate our design methodology, we present in this Section a numerical example to validate the 

effectiveness of the theoretical results. In fact, we show through this example that our approach was the best 

method that takes into account the structure of the nonlinearity in detail.  

Consider a network of single-link manipulators with revolute joints actuated by a DC motor. The dynamics 

of the i-th manipulator was described by (3) with  

 

 

 

   

                                        

 

    

 

[0 21.6 0 0]TB 
 

[0 0 0 0.333]TD  
 

[0 0 1 0]H 
 

3( ) [0 0 0 0.333sin( )]T

i iDf Hx x 
 

 

Clearly, ( )if Hx  satisfies (4) with a Lipschitz constant 0.333  , solving the LMI (9) by using the LMI 

toolbox of  Matlab gives the feasible solution as  

                  

 

                                   
 

 

 
Fig 1 .Communication topology. 

 

 

 

 
                                                                
                                                                   Fig 1 .Communication topology. 

 
 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

1

2

3

4

i

i

i

i

i

x

x
x

x

x

 
 
 
 
 
 

0 1 0 0

48.6 1.25 48.6 0

0 0 0 10

1.95 0 1.95 0

A

 
 
 
 
 
 

 

3239 500 2579 6459

500 77 398 998

2579 398 2054 5144

6459 998 5144 12881

 
 


  
   
 

 

[ 56.68 8.767 45.15 113.1]F    

0.8088, 0.3634  

X
i1
 

X
i3

 

X
i4

 
X

i2
 



Less Conservative Consensus of Multi-agent Systems with Generalized Lipschitz Nonlinear Dynamics 

www.ijres.org                             20 | Page 

 

Fig 2. States of the eight manipulators under (3) 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig 3 . Coupling weights i jc . 

 

In order to illustrate Theorem 2 ,we let the communication graph G  as in fig 1. G  was connected and 

undirected. There were eight manipulators. In other words, , 1,...,8i j   in (1) , 1ij jik k  , (0) (0)ij jic c . 

The coupling weighs were as Fg 2 . They converge to steady values. The states of the manipulators which 

satisfies (3) were as Fg 3. They also get consensus.  

        
 Table1 .Comparwason of maximum Lipschitz constant for various LMI design techniques 

 

Method LMI(14)of L. Zhongkui(2013) LMI(21) 

max
 0.34 

610  

 

We focus our study on the conservation of the states LMI approach. The comparison between different LMI 

conditions in Table 1 shows that our approach is significantly less conservative than other previously published 

results for Lipschitz systems. 
 

V. Conclusions 
  We have studied the adaptive consensus problem of multi-agent systems with generalized Lipschitz 

nonlinear dynamics. A less conservative adaptive consensus condition has been proposed by carefully 

considering the structure information of nonlinearities and using a sharp inequality to deal with the generalized 

Lipschitz condition. It can significantly reduce the conservatism in some existing adaptive consensus results for 

Lipschitz nonlinear system，which is verified through a numerical example. 
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